Surface Production Operations: Design of Oil Handling Systems and Facilities

Ken Arnold & Maurice Stewart

Volume One Third Edition
Surface Production Operations
This page intentionally left blank
Surface Production Operations
Design of Oil Handling Systems and Facilities

Ken Arnold
AMEC Paragon, Houston, Texas
Maurice Stewart
President, Stewart Training Company
THIRD EDITION
Contents

Acknowledgments to the Third Edition xix

About the Book xxiv

Preface to the Third Edition xxvii

1 The Production Facility 1
 Introduction 1
 Making the Equipment Work 15
 Facility Types 18

2 Process Selection 24
 Introduction 24
 Controlling the Process 24
 Operation of a Control Valve 24
 Pressure Control 27
 Level Control 29
 Temperature Control 29
 Flow Control 29
 Basic System Configuration 30
 Wellhead and Manifold 30
 Separation 30
 Initial Separation Pressure 30
 Stage Separation 32
 Selection of Stages 34
Contents

Fields with Different Flowing Tubing Pressures 34
Determining Separator Operating Pressures 36
Two-Phase vs. Three-Phase Separators 37
Process Flowsheet 37
Oil Treating and Storage 37
Lease Automatic Custody Transfer (LACT) 40
Pumps 44
Water Treating 44
Compressors 44
Gas Dehydration 48
Well Testing 50
Gas Lift 53
Offshore Platform Considerations 56
 Overview 56
 Modular Construction 57
 Equipment Arrangement 57

3 Basic Principles 61

Introduction 61
Basic Oil-Field Chemistry 61
 Elements, Compounds, and Mixtures 61
 Atomic and Molecular Weights 62
Hydrocarbon Nomenclature 63
 Paraffin Series: \((C_nH_{2n+2})\) 64
Paraffin Compounds 64
Acids and Bases 65
Fluid Analysis 65
Physical Properties 65
 Molecular Weight and Apparent Molecular Weight 68
 Example 3-1: Molecular weight calculation 69
 Example 3-2: Determine the apparent molecular weight of dry air, which is a gas mixture consisting of nitrogen, oxygen, and small amounts of Argon 69
Gas Specific Gravity and Density 70
 Example 3-3: Calculate the specific gravity of a natural gas with the following composition 71
Nonideal Gas Equations of State 73
Reduced Properties 80
 Example 3-4: Calculate the pseudo-critical temperature and pressure for the following natural gas stream composition 81
 Example 3-5: Calculate the volume of 1 lb mole of the natural gas stream given in the previous example at 120°F and 1500 psia 82
Example 3-6: A sour natural gas has the following composition. Determine the compressibility factor for the gas at 100°F and 1000 psia.
4 Two-Phase Oil and Gas Separation 150

Introduction 150
Phase Equilibrium 151
Factors Affecting Separation 152

Functional Sections of a Gas-Liquid Separator 152
Inlet Diverter Section 154
Liquid Collection Section 154
Gravity Settling Section 154
Mist Extractor Section 154

Equipment Description 155
Horizontal Separators 155
Vertical Separators 156
Spherical Separators 157
Centrifugal Separators 159
Venturi Separators 160
Double-Barrel Horizontal Separators 161
Horizontal Separator with a “Boot” or “Water Pot” 162

Filter Separators 163
Scrubbers 164
Slug Catchers 165

Selection Considerations 165

Vessel Internals 169
Inlet Divers 169
Wave Breakers 170
Defoaming Plates 171
Vortex Breaker 173
Stilling Well 173
Sand Jets and Drains 175

Mist Extractors 176
Introduction 176
Gravitational and Drag Forces Acting on a Droplet 176
Impingement-Type 177
Baffles 178
Wire-Mesh 181
Micro-Fiber 186
Other Configurations 187
Final Selection 187

Potential Operating Problems 190
Foamy Crude 190
Paraffin 192
Sand 192
Liquid Carryover 192
Gas Blowby 193
Liquid Slugs 194

Design Theory 195
Settling 195
5 Three-Phase Oil and Water Separation 244

Introduction 244
Equipment Description 246
 Horizontal Separators 246
 Derivation of Equation (5-1) 250
 Free-Water Knockout 251
 Flow Splitter 252
 Horizontal Three-Phase Separator with a Liquid “Boot” 253
 Vertical Separators 255
Selection Considerations 258
Vessel Internals 259
 Coalescing Plates 260
 Turbulent Flow Coalescers 260
Contents

Potential Operating Problems 261
 Emulsions 261
Design Theory 261
 Gas Separation 261
 Oil–Water Settling 262
 Water Droplet Size in Oil 262
 Oil Droplet Size in Water 262
 Retention Time 264
Separator Design 265
 Horizontal Separators Sizing—Half-Full 265
 Gas Capacity Constraint 265
 Retention Time Constraint 266
 Derivation of Equations (5-4a) and (5-4b) 267
 Settling Water Droplets from Oil Phase 270
 Derivation of Equations (5-5a) and (5-5b) 270
 Derivation of Equation (5-7) 273
 Separating Oil Droplets from Water Phase 274
 Seam-to-Seam Length 274
 Slenderness Ratio 275
 Procedure for Sizing Three-Phase Horizontal
 Separators—Half-Full 275
 Horizontal Separators Sizing Other Than Half-Full 278
 Gas Capacity Constraint 278
 Retention Time Constraint 279
 Settling Equation Constraint 283
 Vertical Separators’ Sizing 283
 Gas Capacity Constraint 284
 Settling Water Droplets from Oil Phase 284
 Derivation of Equations (5-21a) and (5-21b) 285
 Settling Oil from Water Phase 287
 Retention Time Constraint 287
 Derivation of Equations (5-24a) and (5-24b) 288
 Seam-to-Seam Length 289
 Slenderness Ratio 290
 Procedure for Sizing Three-Phase Vertical Separators 291
Examples 294
 Example 5-1: Sizing a vertical three-phase separator
 (field units) 294
 Example 5-2: Sizing a vertical three-phase separator
 (SI units) 297
 Example 5-3: Sizing a horizontal three-phase separator
 (field units) 299
 Example 5-4: Sizing a horizontal three-phase separator
 (SI units) 302
Nomenclature 305
Review Questions 308
Exercises 310
Contents

6 Mechanical Design of Pressure Vessels 316

Introduction 316
Design Considerations 317
Design Temperature 317
Design Pressure 317
Maximum Allowable Stress Values 319
Determining Wall Thickness 320
Corrosion Allowance 324
Inspection Procedures 327
Estimating Vessel Weights 329
Specification and Design of Pressure Vessels 331
Pressure Vessel Specifications 331
Shop Drawings 331
Nozzles 334
Vortex Breaker 334
Manways 339
Vessel Supports 339
Ladder and Platform 341
Pressure Relief Devices 342
Corrosion Protection 342
Example 6-1: Determining the weight of an FWKO vessel (field units) 342
Review Questions 346
Exercises 348
Reference 350

7 Crude Oil Treating and Oil Desalting Systems 351

Introduction 351
Equipment Description 351
Free-Water Knockouts 351
Gunbarrel Tanks with Internal and External Gas Boots 352
Example 7.1: Determination of external water leg height 354
Horizontal Flow Treaters 359
Heaters 360
Indirect Fired Heaters 361
Direct Fired Heaters 362
Waste Heat Recovery 363
Heater Sizing 363
Heater-Treaters 363
Vertical Heater-Treaters 363
Coalescing Media 367
Horizontal Heater-Treaters 368
Contents

Electrostatic Heater-Treaters 377
Oil Dehydrators 382
Heater-Treater Sizing 383
Emulsion Treating Theory 383
 Introduction 383
 Emulsions 384
Differential Density 385
Size of Water Droplets 386
Viscosity 386
Interfacial Tension 386
Presence and Concentration of Emulsifying Agents 387
Water Salinity 387
Age of the Emulsion 387
Agitation 388
 Emulsifying Agents 388
 Demulsifiers 392
Bottle Test 393
Field Trial 394
Field Optimization 395
Changing the Demulsifier 395
Demulsifier Troubleshooting 395
Emulsion Treating Methods 396
 General Considerations 396
 Chemical Addition 397
 Amount of Chemical 397
Bottle Test Considerations 398
 Water Drop-Out Rate 398
 Sludge 398
 Interface 398
 Water Turbidity 398
 Oil Color 399
 Centrifuge Results 399
Chemical Selection 399
 Settling Tank or “Gunbarrel” 399
 Vertical Heater-Treater 399
 Horizontal Heater-Treater 400
Settling Time 400
Coalescence 401
Viscosity 402
Heat Effects 403
Electrostatic Coalescers 410
 Water Droplet Size and Retention Time 412
Treater Equipment Sizing 413
 General Considerations 413
 Heat Input Required 413
 Derivation of Equations (7-5a) and (7-5b) 414
 Gravity Separation Considerations 415
Contents

Settling Equations 416
 Horizontal Vessels 417
Derivation of Equations (7-8a) and (7-8b) 417
 Vertical Vessels 418
Gunbarrels 419
Horizontal Flow Treaters 419
Derivation of Equations (7-10a) and (7-10b) and
 (7-11a) and (7-11b) 421
Retention Time Equations 422
 Horizontal Vessels 422
 Vertical Vessels 422
 Gunbarrels 423
Horizontal Flow Treaters 423
Derivation of Equations (7-12a) and (7-12b) 424
Water Droplet Size 425
Design Procedure 428
 General Design Procedure 428
 Design Procedure for Vertical Heater-Treaters and
 Gunbarrels (Wash Tanks with Internal/External
 Gas Boot) 428
 Design Procedure for Horizontal Heater-Treaters 429
 Design Procedure for Horizontal-Flow Treaters 429
Examples 432
 Example 7-2: Sizing a horizontal treater
 (field units) 432
 Example 7-3: Sizing a horizontal treater (SI units) 434
 Example 7-4: Sizing a vertical treater (field units) 436
 Example 7-5: Sizing a vertical treater (SI units) 437
Practical Considerations 439
 Gunbarrels with Internal/External Gas Boot 439
 Heater-Treaters 440
 Electrostatic Heater-Treaters 440
Oil Desalting Systems 440
 Introduction 440
 Equipment Description 441
 Desalters 441
 Mixing Equipment 441
 Globe Valves 441
 Spray Nozzles 442
 Static Mixers 443
 Process Description 444
 Single-Stage Desalting 444
 Two-Stage Desalting 445
Nomenclature 446
Review Questions 447
Exercises 451
Reference 456

8 Crude Stabilization 457

Introduction 457
Basic Principles 458
 Phase-Equilibrium Considerations 458
 Flash Calculations 460
Process Schemes 460
 Multi-Stage Separation 460
 Oil Heater-Treaters 460
 Liquid Hydrocarbon Stabilizer 461
 Cold-Feed Stabilizer 464
 Stabilizer with Reflux 466
Equipment Description 467
 Stabilizer Tower 467
 Trays and Packing 469
 Trays 469
 Packing 472
 Trays or Packing 474
 Stabilizer Reboiler 475
 Stabilizer Cooler 476
 Stabilizer Reflux System 476
 Stabilizer Feed Cooler 477
 Stabilizer-Heater 477
Stabilizer Design 477
Stabilizer As a Gas-Processing Plant 481

9 Produced Water Treating Systems 482

Introduction 482
Disposal Standards 483
 Offshore Operations 483
 Onshore Operations 484
Characteristics of Produced Water 484
 Dissolved Solids 484
 Precipitated Solids (Scales) 485
 Calcium Carbonate (CaCO₃) 485
 Calcium Sulfate (CaSO₄) 485
 Iron Sulfide (FeS₂) 486
 Barium and Strontium Sulfate (BaSO₄ and SrSO₄) 486
Scale Removal 486
Controlling Scale Using Chemical Inhibitors 487
Sand and Other Suspended Solids 487
 Dissolved Gases 488
 Oil in Water Emulsions 489
 Dissolved Oil Concentrations 490
 Dispersed Oil 491
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxics</td>
<td>494</td>
</tr>
<tr>
<td>Naturally Occurring Radioactive Materials</td>
<td>496</td>
</tr>
<tr>
<td>Bacteria</td>
<td>497</td>
</tr>
<tr>
<td>System Description</td>
<td>499</td>
</tr>
<tr>
<td>Theory</td>
<td>500</td>
</tr>
<tr>
<td>Gravity Separation</td>
<td>501</td>
</tr>
<tr>
<td>Coalescence</td>
<td>502</td>
</tr>
<tr>
<td>Dispersion</td>
<td>503</td>
</tr>
<tr>
<td>Flotation</td>
<td>504</td>
</tr>
<tr>
<td>Filtration</td>
<td>507</td>
</tr>
<tr>
<td>Equipment Description and Sizing</td>
<td>508</td>
</tr>
<tr>
<td>Skim Tanks and Skim Vessels</td>
<td>508</td>
</tr>
<tr>
<td>Configurations</td>
<td>509</td>
</tr>
<tr>
<td>Vertical</td>
<td>509</td>
</tr>
<tr>
<td>Horizontal</td>
<td>510</td>
</tr>
<tr>
<td>Pressure Versus Atmospheric Vessels</td>
<td>511</td>
</tr>
<tr>
<td>Retention Time</td>
<td>511</td>
</tr>
<tr>
<td>Performance Considerations</td>
<td>512</td>
</tr>
<tr>
<td>Skimmer Sizing Equations</td>
<td>514</td>
</tr>
<tr>
<td>Horizontal Cylindrical Vessel:</td>
<td></td>
</tr>
<tr>
<td>Half-Full</td>
<td>514</td>
</tr>
<tr>
<td>Derivation of Equation (9-7)</td>
<td>514</td>
</tr>
<tr>
<td>Horizontal Rectangular Cross-Section Skimmer</td>
<td>517</td>
</tr>
<tr>
<td>Derivation of Equation (9-12)</td>
<td>518</td>
</tr>
<tr>
<td>Derivation of Equation (9-13)</td>
<td>520</td>
</tr>
<tr>
<td>Vertical Cylindrical Skimmer</td>
<td>521</td>
</tr>
<tr>
<td>Derivation of Equation (9-15)</td>
<td>522</td>
</tr>
<tr>
<td>Derivation of Equation (9-17)</td>
<td>523</td>
</tr>
<tr>
<td>Coalescers</td>
<td>524</td>
</tr>
<tr>
<td>Plate Coalescers</td>
<td>524</td>
</tr>
<tr>
<td>Parallel Plate Interceptor (PPI)</td>
<td>526</td>
</tr>
<tr>
<td>Corrugated Plate Interceptor (CPI)</td>
<td>526</td>
</tr>
<tr>
<td>Cross-Flow Devices</td>
<td>530</td>
</tr>
<tr>
<td>Performance Considerations</td>
<td>532</td>
</tr>
<tr>
<td>Selection Criteria</td>
<td>534</td>
</tr>
<tr>
<td>Coalescer Sizing Equations</td>
<td>536</td>
</tr>
<tr>
<td>Derivation of Equation (9-18)</td>
<td>537</td>
</tr>
<tr>
<td>Derivation of Equation (9-19)</td>
<td>539</td>
</tr>
<tr>
<td>CPI Sizing</td>
<td>540</td>
</tr>
<tr>
<td>Cross-Flow Device Sizing</td>
<td>541</td>
</tr>
<tr>
<td>Example 9-1: Determining the dispersed oil content in the effluent water from a CPI plate separator</td>
<td>542</td>
</tr>
<tr>
<td>Oil/Water/Sediment Coalescing Separators</td>
<td>543</td>
</tr>
<tr>
<td>Oil/Water/Sediment Sizing</td>
<td>545</td>
</tr>
</tbody>
</table>
Contents xvii

Nomenclature 606
Review Questions 607
References 609

10 Water Injection Systems 610

Introduction 610
Solids Removal Theory 612
 Removal of Suspended Solids from
 Water 612
 Gravity Settling 612
 Flotation Units 615
Filtration 615
 Inertial Impaction 615
 Diffusional Interception 616
 Direct Interception 617
Filter Types 618
 Nonfixed-Pore Structure Media 618
 Fixed-Pore Structure Media 619
 Surface Media 620
 Summary of Filter Types 620
Removal Ratings 621
 Nominal Rating 621
 Absolute Rating 622
 Beta (β) Rating System 623
Choosing the Proper Filter 624
 Nature of Fluid 624
 Flow Rate 625
 Temperature 625
 Pressure Drop 625
 Surface Area 627
 Void Volume 628
 Degree of Filtration 629
 Prefiltration 629
 Coagulants and Flocculation 630
Measuring Water Compatibility 631
Solids Removal Equipment Description 632
 Gravity Settling Tanks 636
 Horizontal Cylindrical Gravity Settlers 639
 Horizontal Rectangular Cross-Sectional
 Gravity Settlers 641
 Vertical Cylindrical Gravity Settlers 643
 Plate Coalescers 644
 Hydrocyclones 644
 Centrifuges 648
 Flotation Units 648
 Disposable Cartridge Filters 649
Contents

Backwashable Cartridge Filters 651
Granular Media Filters 652
Diatomaceous Earth Filters 660
Chemical Scavenging Equipment 663
Nomenclature 665

Appendix A: Definition of Key Water Treating Terms 667

Appendix B: Water Sampling Techniques 672

Appendix C: Oil Concentration Analysis Techniques 676

Glossary of Terms 682

Index 701
Acknowledgments to the Third Edition

A number of people helped to make possible this revised third edition of *Surface Production Operations, Volume 1—Design of Oil and Water Handling Facilities*. A real debt is owed to the 45,000-plus professional men and women of the organizations that I’ve taught and worked with through my 35-plus years in the oil and gas industry and made a reality the ideas in this book. The companies are too numerous to name, but it’s worth emphasizing that a consultant only makes suggestions—it’s the engineers, managers, technicians, and operators who are faced with the real challenge. I have been privileged to work with the “best-of-the-best” companies in the world, and this book is dedicated to them for their vision and perseverance.

Although I can’t mention everyone who has helped me along the way, I would like to say thank you to my colleagues and friends: Jamin Djuang of PT Loka Datamas Indah; Chang Choon Kiang, Amran Manaf, and Ridzuan Arrifin of Petroleum Training Southeast Asia (PTSEA); Clem Nwogbo of Resourse Plus; Khun Aujchara and Bundit Pattanasak of PTTEP; Al Ducote and Greg Abdelnor of Chevron Nigeria Limited, and David Rodriguez of Chevron Angola (CABGOC).

Thanks are due to Samuel Sowunmi of Chevron Nigeria Limited and Mochammad Zainal-Abidin of Total Indonesie, who were responsible for proofreading the text and making certain all units were correct. Thanks are also due to Yudhianto of Stewart Training Company (STC), for drawing hundreds of new illustrations from our crude sketches. Of critical
Importance was the contribution of Heri Wibowo of STC, who was responsible for coordinating the entire typing and drafting effort. Heri was also responsible for editing and pulling it all together at the end. However, we take full responsibility for any errors that still remain in this text.

Lastly, I would like to thank my wife, Dyah who has been my inspiration, providing support and encouragement when needed.

Maurice Stewart

The first editions of this book were based mostly on materials I had developed and gathered over the years based on what was then 20 years worth of experience and interaction with some very talented people at Shell and Paragon Engineering Services (now AMEC Paragon). Maurice provided first drafts of several chapters, additional materials and technical assistance.

The second edition was created by Maurice and I furnishing guidance and technical material to a group of AMEC Paragon engineers who made modifications to the existing chapters. These engineers were: Eric Barron, Jim Cullen, Fernando De La Fuente, Robert Ferguson, Mike Hale, Sandeep Khurana, Kevin Mara, Matt McKinstry, Carl Sikes, Mary Thro, Kirk Trascher and Mike Whitworth. David Arnold pulled it all together.

This edition contains significant amounts of new material which was developed and gathered primarily by Maurice as a result of his years of teaching and consulting using the original editions as a guide. I served mostly as a technical reviewer adding little in the way of new materials. Maurice deserves most of the credit for this edition.

Ken Arnold
About the Book

Surface Production Operations, Volume 1—Design of Oil and Water Handling Facilities, is a complete and up-to-date resource manual for the design, selection, specification, installation, operation, testing, and troubleshooting of oil and water handling facilities. It is the first volume in the Surface Production Operations series and is the most comprehensive book you’ll find today dealing with surface production operations in its various stages, from initial entry into the flowline through separation, treating, conditioning, and processing equipment to the exiting pipeline. Featured in this text are such important topics as gas–liquid separation, liquid–liquid separation, oil treating, desalting, water treating, water injection, crude stabilization, and many other related topics.

This complete revision builds upon the classic text to further enhance its use as a facility engineering process design manual of methods and proven fundamentals. This new edition includes important supplemental mechanical and related data, nomographs, illustrations, charts, and tables. Also included are improved techniques and fundamental methodologies to guide the engineer in designing surface production equipment and applying chemical processes to properly detailed equipment.

All volumes of the Surface Production Operations series serve the practicing engineer by providing organized design procedures; details on suitable equipment for application selection; and charts, tables, and nomographs in readily usable form. Facility engineers, designers, and operators will develop a “feel” for the important parameters in designing, selecting,
About the Book

specifying, operating, and troubleshooting surface production facilities. Readers will understand the uncertainties and assumptions inherent in designing and operating the equipment in these systems and the limitations, advantages, and disadvantages associated with their use.
Preface to the Third Edition

Ken Arnold and I initially wrote the Surface Production Operations two-volume series with the intention of providing facility engineers with a starting point for addressing the design and operation of surface production facilities. This text provides the basic concepts and techniques necessary to design, specify, and manage oil and gas production facilities.

In the early 1980s, Ken and I developed and taught a number of graduate-level production facility design courses. These courses were taught in the petroleum engineering department of the University of Houston, Tulane University, and Louisiana State University. In the mid-1980s, we took our course lecture notes and published the two-volume Surface Production Operations series. These books became the standard for the industry and have been used by thousands in every oil producing region of the world since their first printing.

We developed and taught two 5-day intensive continuing education courses dealing with oil and gas handling facilities; they were based on our production facility design experience, with emphasis on how to design, select, specify, install, operate, test, and troubleshoot. These courses became so well known through presentations in Southeast Asia, Northern and West Africa, the North Sea, Western and Southern Europe, China, Central Asia, the Democratic Republic of Congo, India, Central and South America, Australia, Canada, and throughout the United States, that in the late 1980s, in response to the many requests by international oil and gas companies and design consultants, we developed additional 5-day seminars devoted to all aspects of production facility design. The continuing-education course lecture notes developed for the 20-plus 5-day courses was the starting point for the expansion and extensive revision of this series.
Preface to the Third Edition

The third edition of *Surface Production Operations, Volume 1—Design of Oil and Water Handling Facilities*, builds upon the classic text to further enhance its use as a production facility engineering design manual. Every chapter has been significantly expanded and thoroughly updated with new material. Every chapter has been carefully reviewed and older material removed and replaced by newer design techniques. It is important to appreciate that not all of the material has been replaced, because much of the so-called older material is still the best available today, and still yields good designs. Additional charts and tables have been included to aid in the design methods or in explaining the design techniques. This book further provides both fundamental theories where applicable and directs application of these theories to applied equations, expressed in both SI and field units, essential in the design effort. A conscious effort has been made to offer guidelines of sound engineering judgment, decisions, and selections with applicable codes, standards, and recommended practices.