Nano-optics is the study of optical phenomena and techniques on the nanometer scale, that is, near or beyond the diffraction limit of light. It is an emerging field of study, motivated by the rapid advance of nanoscience and nanotechnology which require adequate tools and strategies for fabrication, manipulation and characterization at this scale.

In *Principles of Nano-Optics* the authors provide a comprehensive overview of the theoretical and experimental concepts necessary to understand and work in nano-optics. With a very broad perspective, they cover optical phenomena relevant to the nanoscale across diverse areas ranging from quantum optics to biophysics, introducing and extensively describing all of the significant methods.

This is the first textbook specifically on nano-optics. Written for graduate students who want to enter the field, it includes problem sets to reinforce and extend the discussion. It is also a valuable reference for researchers and course teachers.

Lukas Novotny is Professor of Optics and Physics at the University of Rochester. He heads the Nano-Optics Research Group at the Institute of Optics, University of Rochester. He received his Ph.D. from the Swiss Federal Institute of Technology (ETH) in Switzerland. He later joined the Pacific Northwest National Laboratory, WA, USA, where he worked in the Chemical Structure and Dynamics Group. In 1999 he joined the faculty of the Institute of Optics at the University of Rochester. He developed a course on nano-optics which was taught several times at the graduate level and which forms the basis of this textbook. His general interest is in nanoscale light–matter interactions ranging from questions in solid-state physics to biophysical applications.

Bert Hecht is Head of the Nano-Optics Group and a member of the Swiss National Center of Competence in Research in Nanoscale Science at the Institute of Physics at the University of Basel. After studying Physics at the University of Konstanz, he joined the IBM Zurich Research Laboratory in Rüschlikon and worked in near-field optical microscopy and plasmonics. In 1996 he received his Ph.D. from the University of Basel. He then joined the Swiss Federal Institute of Technology (ETH) where he worked in the Physical Chemistry Laboratory on single-molecule spectroscopy in combination with scanning probe techniques. He received the venia legendi in Physical Chemistry from ETH in 2002. In 2001, he was awarded a Swiss National Science Foundation research professorship and took up his present position. In 2004 he received the venia docendi in Experimental Physics/Optics from the University of Basel. He has authored or co-authored more than 50 articles in the field of nano-optics.
To our families
(Jessica, Leonore, Jakob, David, Nadja, Jan)

And our parents
(Annemarie, Werner, Miloslav, Vera)

... it was almost worth the climb
(B. B. Goldberg)
Contents

Preface xv

1 Introduction 1
 1.1 Nano-optics in a nutshell 3
 1.2 Historical survey 5
 1.3 Scope of the book 7
 References 11

2 Theoretical foundations 13
 2.1 Macroscopic electrodynamics 14
 2.2 Wave equations 15
 2.3 Constitutive relations 15
 2.4 Spectral representation of time-dependent fields 17
 2.5 Time-harmonic fields 17
 2.6 Complex dielectric constant 18
 2.7 Piecewise homogeneous media 19
 2.8 Boundary conditions 19
 2.8.1 Fresnel reflection and transmission coefficients 21
 2.9 Conservation of energy 23
 2.10 Dyadic Green’s functions 25
 2.10.1 Mathematical basis of Green’s functions 25
 2.10.2 Derivation of the Green’s function for the electric field 26
 2.10.3 Time-dependent Green’s functions 30
 2.11 Evanescent fields 31
 2.11.1 Energy transport by evanescent waves 35
 2.11.2 Frustrated total internal reflection 36
 2.12 Angular spectrum representation of optical fields 38
 2.12.1 Angular spectrum representation of the dipole field 42
Contents

<table>
<thead>
<tr>
<th>Problems</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>43</td>
</tr>
</tbody>
</table>

3 Propagation and focusing of optical fields

3.1 Field propagators 45
3.2 Paraxial approximation of optical fields 47
 3.2.1 Gaussian laser beams 47
 3.2.2 Higher-order laser modes 50
 3.2.3 Longitudinal fields in the focal region 50
3.3 Polarized electric and polarized magnetic fields 53
3.4 Far-fields in the angular spectrum representation 54
3.5 Focusing of fields 56
3.6 Focal fields 61
3.7 Focusing of higher-order laser modes 66
3.8 Limit of weak focusing 71
3.9 Focusing near planar interfaces 73
3.10 Reflected image of a strongly focused spot 78

Problems 86
References 87

4 Spatial resolution and position accuracy

4.1 The point-spread function 89
4.2 The resolution limit(s) 95
 4.2.1 Increasing resolution through selective excitation 98
 4.2.2 Axial resolution 100
 4.2.3 Resolution enhancement through saturation 102
4.3 Principles of confocal microscopy 105
4.4 Axial resolution in multiphoton microscopy 110
4.5 Position accuracy 111
 4.5.1 Theoretical background 112
 4.5.2 Estimating the uncertainties of fit parameters 115
4.6 Principles of near-field optical microscopy 121
 4.6.1 Information transfer from near-field to far-field 125

Problems 131
References 132

5 Nanoscale optical microscopy

5.1 Far-field illumination and detection 134
 5.1.1 Confocal microscopy 134
5.2 Near-field illumination and far-field detection 147
 5.2.1 Aperture scanning near-field optical microscopy 148
 5.2.2 Field-enhanced scanning near-field optical microscopy 149

7.3 Topographic artifacts
 7.3.1 Phenomenological theory of artifacts
 7.3.2 Example of near-field artifacts
 7.3.3 Discussion

Problems
References

8 Light emission and optical interactions in nanoscale environments
 8.1 The multipole expansion
 8.2 The classical particle–field Hamiltonian
 8.2.1 Multipole expansion of the interaction Hamiltonian
 8.3 The radiating electric dipole
 8.3.1 Electric dipole fields in a homogeneous space
 8.3.2 Dipole radiation
 8.3.3 Rate of energy dissipation in inhomogeneous environments
 8.3.4 Radiation reaction
 8.4 Spontaneous decay
 8.4.1 QED of spontaneous decay
 8.4.2 Spontaneous decay and Green’s dyadics
 8.4.3 Local density of states
 8.5 Classical lifetimes and decay rates
 8.5.1 Homogeneous environment
 8.5.2 Inhomogeneous environment
 8.5.3 Frequency shifts
 8.5.4 Quantum yield
 8.6 Dipole–dipole interactions and energy transfer
 8.6.1 Multipole expansion of the Coulombic interaction
 8.6.2 Energy transfer between two particles
 8.7 Delocalized excitations (strong coupling)
 8.7.1 Entanglement

Problems
References

9 Quantum emitters
 9.1 Fluorescent molecules
 9.1.1 Excitation
 9.1.2 Relaxation
 9.2 Semiconductor quantum dots
 9.2.1 Surface passivation
 9.2.2 Excitation
 9.2.3 Coherent control of excitons
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>The absorption cross-section</td>
<td>315</td>
</tr>
<tr>
<td>9.4</td>
<td>Single-photon emission by three-level systems</td>
<td>318</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Steady-state analysis</td>
<td>319</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Time-dependent analysis</td>
<td>320</td>
</tr>
<tr>
<td>9.5</td>
<td>Single molecules as probes for localized fields</td>
<td>325</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Field distribution in a laser focus</td>
<td>327</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Probing strongly localized fields</td>
<td>329</td>
</tr>
<tr>
<td>9.6</td>
<td>Conclusion</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>333</td>
</tr>
<tr>
<td>10</td>
<td>Dipole emission near planar interfaces</td>
<td>335</td>
</tr>
<tr>
<td>10.1</td>
<td>Allowed and forbidden light</td>
<td>336</td>
</tr>
<tr>
<td>10.2</td>
<td>Angular spectrum representation of the dyadic Green’s function</td>
<td>338</td>
</tr>
<tr>
<td>10.3</td>
<td>Decomposition of the dyadic Green’s function</td>
<td>339</td>
</tr>
<tr>
<td>10.4</td>
<td>Dyadic Green’s functions for the reflected and transmitted fields</td>
<td>340</td>
</tr>
<tr>
<td>10.5</td>
<td>Spontaneous decay rates near planar interfaces</td>
<td>343</td>
</tr>
<tr>
<td>10.6</td>
<td>Far-fields</td>
<td>346</td>
</tr>
<tr>
<td>10.7</td>
<td>Radiation patterns</td>
<td>350</td>
</tr>
<tr>
<td>10.8</td>
<td>Where is the radiation going?</td>
<td>353</td>
</tr>
<tr>
<td>10.9</td>
<td>Magnetic dipoles</td>
<td>356</td>
</tr>
<tr>
<td>10.10</td>
<td>Image dipole approximation</td>
<td>357</td>
</tr>
<tr>
<td>10.10.1</td>
<td>Vertical dipole</td>
<td>358</td>
</tr>
<tr>
<td>10.10.2</td>
<td>Horizontal dipole</td>
<td>359</td>
</tr>
<tr>
<td>10.10.3</td>
<td>Including retardation</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>361</td>
</tr>
<tr>
<td>11</td>
<td>Photonic crystals and resonators</td>
<td>363</td>
</tr>
<tr>
<td>11.1</td>
<td>Photonic crystals</td>
<td>363</td>
</tr>
<tr>
<td>11.1.1</td>
<td>The photonic bandgap</td>
<td>364</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Defects in photonic crystals</td>
<td>368</td>
</tr>
<tr>
<td>11.2</td>
<td>Optical microcavities</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>377</td>
</tr>
<tr>
<td>12</td>
<td>Surface plasmons</td>
<td>378</td>
</tr>
<tr>
<td>12.1</td>
<td>Optical properties of noble metals</td>
<td>379</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Drude–Sommerfeld theory</td>
<td>380</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Interband transitions</td>
<td>381</td>
</tr>
<tr>
<td>12.2</td>
<td>Surface plasmon polaritons at plane interfaces</td>
<td>382</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Properties of surface plasmon polaritons</td>
<td>386</td>
</tr>
</tbody>
</table>
12.2.2 Excitation of surface plasmon polaritons 387
12.2.3 Surface plasmon sensors 392

12.3 Surface plasmons in nano-optics 393
 12.3.1 Plasmons supported by wires and particles 398
 12.3.2 Plasmon resonances of more complex structures 407
 12.3.3 Surface-enhanced Raman scattering 410

12.4 Conclusion 414
Problems 414
References 416

13 Forces in confined fields 419
 13.1 Maxwell’s stress tensor 420
 13.2 Radiation pressure 423
 13.3 The dipole approximation 424
 13.3.1 Time-averaged force 426
 13.3.2 Monochromatic fields 427
 13.3.3 Saturation behavior for near-resonance excitation 429
 13.3.4 Beyond the dipole approximation 432
 13.4 Optical tweezers 433
 13.5 Angular momentum and torque 436
 13.6 Forces in optical near-fields 437
 13.7 Conclusion 443
Problems 443
References 444

14 Fluctuation-induced interactions 446
 14.1 The fluctuation–dissipation theorem 446
 14.1.1 The system response function 448
 14.1.2 Johnson noise 452
 14.1.3 Dissipation due to fluctuating external fields 454
 14.1.4 Normal and antinormal ordering 455
 14.2 Emission by fluctuating sources 456
 14.2.1 Blackbody radiation 458
 14.2.2 Coherence, spectral shifts and heat transfer 459
 14.3 Fluctuation-induced forces 461
 14.3.1 The Casimir–Polder potential 463
 14.3.2 Electromagnetic friction 467
 14.4 Conclusion 472
Problems 472
References 473
15 Theoretical methods in nano-optics 475
15.1 The multiple multipole method 476
15.2 Volume integral methods 483
 15.2.1 The volume integral equation 484
 15.2.2 The method of moments (MOM) 490
 15.2.3 The coupled dipole method (CDM) 490
 15.2.4 Equivalence of the MOM and the CDM 492
15.3 Effective polarizability 494
15.4 The total Green’s function 495
15.5 Conclusion and outlook 496
Problems 497
References 498

Appendix A Semianalytical derivation of the atomic polarizability 500
 A.1 Steady-state polarizability for weak excitation fields 504
 A.2 Near-resonance excitation in absence of damping 506
 A.3 Near-resonance excitation with damping 508

Appendix B Spontaneous emission in the weak coupling regime 510
 B.1 Weisskopf–Wigner theory 510
 B.2 Inhomogeneous environments 512
References 514

Appendix C Fields of a dipole near a layered substrate 515
 C.1 Vertical electric dipole 515
 C.2 Horizontal electric dipole 516
 C.3 Definition of the coefficients A_j, B_j, and C_j 519

Appendix D Far-field Green’s functions 521

Index 525