Contents

List of Contributors ... ix
A Brief Review of the Sections ... xi
Preface .. xiii
Acknowledgements .. xiv

Section I: Basic Biochemistry of Creatine and Creatine Phosphate

1. Old and New Ideas on the Roles of Phosphagens and their Kinases 3
 Eric A. Newsholme and Isidoros Beis
 1. Historical introduction to phosphagen kinases 3
 2. Physiological functions of phosphagen kinases 5
 3. Use of creatine kinase by the biochemist and physiologist 8
 4. The phosphoglycerate kinase–glyceraldehyde 3-phosphate dehydrogenase (GAPDH) method 9
 5. Comparison of the amount of ADP irreversibly bound to structural protein in the domestic fowl pectoral muscle 10
 6. Determination of the amount of ADP irreversibly bound to structural protein in the domestic fowl pectoral muscle 11
 References .. 13

2. Creatine Phosphate Shuttle Pathway in Tissues with Dynamic Energy Demand 17
 Tony S. Ma, David L. Friedman and Robert Roberts
 1. Creatine phosphate shuttle hypothesis: cytosolic and mitochondrial CK serve as components of the shuttle 17
 2. CK in specialized cells: biochemical, physiological and immunological characterization 19
 3. Subcellular localization of CK 22
 4. Structure-function analysis of CK 23
 5. Targeted modification of CK 25
 6. Future applications 26
 7. Summary 27
 Acknowledgements .. 28
 References .. 28

3. Experimental Observations of Creatine and Creatine Phosphate Metabolism 33
 Joseph F. Clark, Joseph Odoom, Irene Tracey, Jeff Dunn, Ernie A. Boehm, Giovanni Paternostro and George K. Radda
 1. Introduction 33
 2. NMR studies of ATP and creatine phosphate in the heart 34
 3. Creatine phosphate metabolism investigated with
 β-guanidinopropionic acid 36
 4. Creatine phosphate in skeletal muscle 39
 5. Creatine transport 41
CONTENTS

6. Summary
 References
 46

4. An Introduction to the Cellular Creatine Kinase System in Contractile Tissue
 Joseph F. Clark, Mark L. Field and Renée Ventura-Clapier
 1. Introduction
 51
 2. The creatine kinase system in different muscle types
 52
 3. Skeletal muscle
 53
 4. Cardiac muscle
 54
 5. Smooth muscle
 59
 6. Summary
 References
 61
 62

5. Cardiac Energetics: Compartmentalisation of Creatine Kinase and Regulation
 of Oxidative Phosphorylation
 Valdur A. Saks
 1. Introduction
 65
 2. The role of the outer mitochondrial membrane in restricting ADP
 diffusion and controlling respiration
 66
 3. Metabolic oscillations in cytoplasm as a feedback signal
 72
 References
 76

6. The Role of the Creatine Kinase/Creatine Phosphate System Studied by
 Molecular Biology
 Joseph F. Clark
 1. Introduction
 79
 2. Transgenic knock-out
 80
 3. Muscle performance
 80
 4. Graded CK knock-out
 82
 5. Transgenic overexpression
 86
 6. Summary
 Acknowledgements
 References
 86
 87

Section II: Biochemical Basis for a Therapeutic Role of Creatine and
Creatine Phosphate

7. Molecular and Cellular Mechanisms of Action for the Cardioprotective and
 Therapeutic Role of Creatine Phosphate
 Valdur A. Saks, Valery Stepanov, Irakli V. Jaliashvili, Eugeny A. Konorev,
 Sergi A. Kryzkanovsky and Ettore Strumia
 1. Introduction
 91
 2. Pharmacological effects of exogenous PCr
 92
 3. Calcium dependence of the anti-ischaemic effect of PCr
 94
 4. Protection of the heart from oxidative damage
 96
 5. Effects of PCr on phospholipid metabolism
 97
 6. Other biochemical effects related to the uptake of PCr
 99
CONTENTS

7. Pharmacokinetics of PCr uptake by different tissues 100
8. Direct effect of PCr on the cell membrane 100
9. The zwitterionic mechanism of action of PCr 102
10. Attenuation of Adriamycin cardiotoxicity by exogenous PCr 103
11. Extracellular effects of PCr 108
12. Summary References 110

8. Effects of Creatine Phosphate on Cultured Cardiac Cells 115
 Theodore J. Lampidis, Yu-Fang Shi and Luigi Silvestro
 1. Introduction 115
 2. Protection by creatine phosphate against Adriamycin 117
 3. Summary 119
 References 123

Section III: Magnetic Resonance Spectroscopy of Creatine Phosphate in the Cardiovascular System

9. Creatine Phosphate: in vivo Human Cardiac Metabolism Studied by Magnetic Resonance Spectroscopy 127
 Michael A. Conway, Ronald Ouwerkerk, Bheesma Rajagopalan and George K. Radda
 1. Introduction 127
 2. The normal heart: resting metabolism 128
 3. The normal heart: isotonic and isometric exercise 131
 4. Left ventricular hypertrophy 137
 5. Ischaemic heart disease 143
 6. Myocarditis and dilated cardiomyopathy 148
 7. Cardiac transplantation 149
 8. Creatine phosphate changes in tachycardia and rhythm disorders 150
 9. Hypoxaemic congenital heart disease 151
10. Infiltrative conditions: amyloidosis and granulomatous cardiomyopathy 151
11. Changes in creatine phosphate: the effects of drug therapy and diagnostic potential 152
12. Summary Acknowledgements References 153

10. Skeletal Muscle Metabolism in Heart Failure 161
 Michael A. Conway, Bheesma Rajagopalan and George K. Radda
 1. Background haemodynamic and oxygen consumption studies 161
 2. Abnormalities in muscle metabolism 162
 3. Peripheral blood flow during exercise: relationship to metabolic changes 167
 4. Skeletal muscle metabolism and blood flow in the calf muscle in controls and patients with heart failure at rest and during exercise 171
 5. Skeletal muscle metabolism during recovery from exercise 173
 6. Mechanisms of metabolic abnormalities in skeletal muscle in heart failure 174
CONTENTS

7. Reversing the changes in skeletal muscle metabolism in heart failure 176
8. Summary 178
 Acknowledgements 178
 References 178

Section IV: Therapeutic Aspects of Creatine and Creatine Phosphate Metabolism

11. Clinical Experience with Creatine Phosphate Therapy 185
 Paola Pauletto and Ettore Strumia
 1. Introduction 185
 2. Heart surgery 186
 3. Myocardial infarction 189
 4. Heart failure 192
 5. Summary 195
 References 196

12. Creatine Phosphate Added to St Thomas’ Cardioplegia 199
 David J. Chambers
 1. Introduction 199
 2. Experimental studies 200
 3. Results 201
 4. Clinical studies 204
 5. Results 206
 6. Discussion 209
 7. Summary 213
 References 214

13. Uses of Creatine Phosphate and Creatine Supplementation for the Athlete 217
 Joseph F. Clark
 1. Introduction 217
 2. Experimental creatine supplementation 218
 3. Oral creatine supplementation 219
 4. Control of nucleotide loss 221
 5. Creatine phosphate 221
 6. Summary 223
 Acknowledgements 224
 References 224

14. Creatine and Creatine Phosphate: Future Perspectives 227
 Michael A. Conway and Joseph F. Clark
 1. Future perspectives 227
 References 229

Appendix
Assay for Creatine and Creatine Phosphate 233
Glossary 237
Index 239
List of Contributors

Isidoros Beis, Department of Physiology, University of Salonika, Salonika, Greece.

Ernie A. Boehm, Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK.

David J. Chambers, Cardiac Surgical Research, Rayne Institute, St Thomas' Hospital, London SE1 7EH, UK.

Joseph F. Clark, Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK.

Michael A. Conway, MRC Biochemical and Clinical Magnetic Resonance Unit & Cardiac Dept., John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK. University of Dublin, Trinity College

Jeff Dunn, Department of Diagnostic Radiology, Dartmouth-Hitchcock Medical Center, 7786 Vail, Hanover, New Hampshire 03755-3863, USA.

Mark L. Field, Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK.

David L. Friedman, Cardiology, The Methodist Hospital and Veterans Administration Medical Center, Baylor College of Medicine, Houston, Texas 77030, USA.

Irakli V. Jalashvili, All Union Cardiology Research Institute, 3 Cherepkovskaya St, 121552 Moscow, Russia.

Eugeny A. Koronev, All Union Cardiology Research Institute, 3 Cherepkovskaya St, 121552 Moscow, Russia.

Sergi A. Kryzanovsky, Institute of Pharmacology, Russian Medical Academy, Moscow, Russia.

Theodore J. Lampidis, Department of Cell Biology and Anatomy, University of Miami, School of Medicine, Miami, Florida, 33101, USA.

Tony S. Ma, Cardiology, The Methodist Hospital and Veterans Administration Medical Center, Baylor College of Medicine, Houston, Texas 77030, USA.

Eric A. Newsholme, Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK.

Joseph Odoom, Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK.

Ronald Ouwerkerk, Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK and University Hospital, Utrecht, Holland.

Giovanni Paternostro, Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK.

Paulo Pauletto, Department of Internal Medicine, Padua University, Italy.

George K. Radda, Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK.
Bheeshma Rajagopalan, Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK.

Robert Roberts, Cardiology, The Methodist Hospital and Veterans Administration Medical Centre, Baylor College of Medicine, Houston, Texas 77030, USA.

Valdur A. Saks, Laboratory of Bioenergetics, Institute of Chemical and Biological Physics, Academy tee 23, Tallinn, Estonia.

Yu-Fang Shi, Department of Cell Biology and Anatomy, University of Miami, School of Medicine, Miami, Florida 33101, USA.

Luigi Silvestro, Res. Pharma, Pharmacological Research Institute s.r.i., Via Belifore 57, Torino, Italy.

Valery Stepanov, Cardiologie Cellulaire et Moléculaire, INSERM CJF 92–11, Faculté de Pharmacie (Tour D4), 5 rue Jean-Baptiste Clément, F-92296 Chatenay-Malabry Cedex, France.

Ettore Strumia, Pharmaceutical Research Centre, University of Turin, Turin 10100, Italy.

Irene Tracey, MGH-NMR Center, Bldg No 149, 13th St, Charlestown, Boston, Massachusetts 02129, USA.

A Brief Review of the Sections

Section I: *Basic Biochemistry of Creatine and Creatine Phosphate*

This section covers aspects of the basic metabolism of creatine and creatine phosphate with particular emphasis on the enzyme creatine kinase, the creatine phosphate shuttle hypothesis, recent observations in animal and cellular models, on the high energy phosphate changes in physiological studies, β-GPA feeding, and some muscle disorders. The regulation of oxidative phosphorylation is discussed and findings relating to creatine kinase gene manipulation models are summarized.

Section II: *Biochemical Basis for a Therapeutic Role of Creatine and Creatine Phosphate*

In this section the mechanism underlying the mode of action by which creatine and creatine phosphate are thought to act as therapeutic agents is presented. A detailed description of the biophysical actions of creatine phosphate is given as well as *in vitro* observations on heart cells. This is a transition section between the basic and clinical science sections.

Section III: *Magnetic Resonance Spectroscopy of Creatine Phosphate in the Cardiovascular System*

Magnetic resonance spectroscopy is a non-invasive analytical technique for measuring chemical species, such as creatine phosphate, in humans, animals, cellular and other systems. This section outlines the current findings and requirements in NMR spectroscopy of the human heart and skeletal muscle in heart failure.

Section IV: *Therapeutic Aspects of Creatine and Creatine Phosphate Metabolism*

In the last section the uses of creatine phosphate as a therapeutic agent are introduced both for clinical and sports medicine application and in performance. This section finishes with a look towards future developments.
Appendix: Assay for Creatine and Creatine Phosphate

For the interested reader a detailed method for the assay of creatine phosphate and creatine has been summarized.
Preface

Creatine and creatine phosphate (CP, also called phosphocreatine, PCr) are important metabolites in high-energy phosphorus metabolism. They rank with dietary carbohydrates fats, proteins and other compounds as central components of the metabolic system involved in the provision of energy for work and exercise performance.

Over the past century numerous investigators have explored the basic biochemistry and in the past 20 years a whole science has developed around methods for measuring the molecules in vivo – proton and \(^{31}\)P magnetic resonance spectroscopy. Some investigators have begun to examine the therapeutic role of the agents for the treatment of cardiovascular and other disease and in recent times much interest has developed in the potential of creatine (and PCr) for exercise and performance enhancement.

This book is designed to focus attention on creatine and creatine phosphate. The contributions have been invited from many of the key investigators in the field of high-energy phosphorus metabolism and, as such, represent an important distillation of the observations, ideas and theories which form the foundation for the exciting future of this science.

Each chapter represents the views of the individual authors and not necessarily those of the editors. Also, the book represents a reference and sourcebook and is not designed as a therapeutic manual. Hence, the administration of creatine and creatine phosphate must be performed according to the recommendations of the manufacturers and suppliers.

Michael A. Conway and Joseph F. Clark
1996
Acknowledgements

Creatine and Creatine Phosphate: Scientific and Clinical Perspectives was compiled with the support of a large number of contributors who undertook to complete their manuscripts within a very short period of time. We are very grateful to them for their enthusiastic support.

Some of the work summarized in this book has depended on the efforts of several investigators and these are acknowledged at the end of the individual chapters where appropriate.

We would like to thank Academic Press for their support in the publication of the book and the many other colleagues and friends in Oxford (Department of Biochemistry and MRC Biochemical and Clinical Magnetic Resonance Unit), The United States, France, Russia, Estonia, Ireland and Italy who encouraged the project.