This page intentionally left blank
In memory of Lili Pasternak (1938–2008),
an extraordinary human being
Contents

Preface xiii
Preface to the First Edition xv

PART I
FUNDAMENTALS OF MOLECULAR BIOTECHNOLOGY 1

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Development of Molecular Biotechnology</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>DNA, RNA, and Protein Synthesis</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Recombinant DNA Technology</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>Chemical Synthesis, Amplification, and Sequencing of DNA</td>
<td>98</td>
</tr>
</tbody>
</table>

CHAPTER 1

The Emergence of Molecular Biotechnology 3
Recombinant DNA Technology 5
Commercialization of Molecular Biotechnology 6
Concerns and Consequences 10
SUMMARY 12
REFERENCES 13
REVIEW QUESTIONS 13

CHAPTER 2

Structure of DNA 14
DNA Replication 18
Decoding Genetic Information: RNA and Protein 20
Translation 26
Regulation of mRNA Transcription in Bacteria 33
Regulation of mRNA Transcription in Eukaryotes 37
Protein Secretion Pathways 40

CHAPTER 3

Restriction Endonucleases 49
Plasmid Cloning Vectors 57
Plasmid Cloning Vector pBR322 59
Transformation and Selection 60
Other Plasmid Cloning Vectors 63
Creating and Screening a Library 68
Making a Genomic Library 68
Screening by DNA Hybridization 70
Screening by Immunological Assay 76
Screening by Protein Activity 78
Cloning DNA Sequences That Encode Eukaryotic Proteins 80
Vectors for Cloning Large Pieces of DNA 86
Bacteriophage λ Vectors 86
Cosmids 90
High-Capacity Bacterial Vector Systems 92
Genetic Transformation of Prokaryotes 92
Transferring DNA into E. coli 92
Electroporation 93
Conjugation 94
SUMMARY 95
REFERENCES 96
REVIEW QUESTIONS 97

CHAPTER 4

Chemical Synthesis of DNA 98
The Phosphoramidite Method 99
Uses of Synthesized Oligonucleotides 103
Polymerase Chain Reaction 108
PCR Amplification of Full-Length cDNAs 113
Gene Synthesis by PCR 113
DNA-Sequencing Techniques 117
Dideoxynucleotide Procedure for Sequencing DNA 118
Primer Walking 124
Pyrosequencing 125
Sequencing Using Reversible Chain Terminators 128
Sequencing by Ligation 131
Large-Scale DNA Sequencing 133
Vector Vaccines 486
Vaccines Directed against Viruses 486
Vaccines Directed against Bacteria 492
Bacteria as Antigen Delivery Systems 494
SUMMARY 497
REFERENCES 497
REVIEW QUESTIONS 499

CHAPTER 13
Synthesis of Commercial Products by Recombinant Microorganisms 501
Restriction Endonucleases 501
Lipase 505
Small Biological Molecules 506
Synthesis of l-Ascorbic Acid 507
Microbial Synthesis of Indigo 512
Synthesis of Amino Acids 514
Microbial Synthesis of Lycopene 519
Increasing Succinic Acid Production 519
Antibiotics 521
Cloning Antibiotic Biosynthesis Genes 523
Modulating Gene Expression in Streptomyces 526
Synthesis of Novel Antibiotics 527
Engineering Polyketide Antibiotics 529
Improving Antibiotic Production 531
Designer Antibiotics 534
Biopolymers 535
Xanthan Gum 535
Melanin 538
Adhesive Protein 539
Rubber 541
Polyhydroxalkanoates 542
Hyaluronic Acid 545
SUMMARY 547
REFERENCES 547
REVIEW QUESTIONS 549

CHAPTER 14
Bioremediation and Biomass Utilization 551
Microbial Degradation of Xenobiotics 551
Hydrogenase 630
Hydrogen Metabolism 631
Genetic Engineering of Hydrogenase Genes 632
Nodulation 635
Competition among Nodulating Organisms 635
Genetic Engineering of Nodulation Genes 635
Nodulation and Ethylene 640
Phytoremediation 641
Engineering Strains That Facilitate Growth 641
Engineering Degradative Plasmids 643
Engineering Bacterial Endophytes 644
Metals in the Environment 646
SUMMARY 648
REFERENCES 649
REVIEW QUESTIONS 651

CHAPTER 15
Plant Growth-Promoting Bacteria 599
Growth Promotion by Free-Living Bacteria 600
Decreasing Plant Stress 604
Increasing Phosphorus Availability 606
Biocatalysis of Pathogens 608
Siderophores 608
Antibiotics 612
Enzymes 614
Ice Nucleation and Antifreeze Proteins 614
Ethylene 617
Root Colonization 618
Nitrogen Fixation 619
Nitrogenase 621
Components of Nitrogenase 621
Genetic Engineering of the Nitrogenase Gene Cluster 622
Engineering Improved Nitrogen Fixation 628
 PHYTOREMEDIATION 641
Engineering Strains That Facilitate Growth 641
Engineering Degradative Plasmids 643
Engineering Bacterial Endophytes 644
Metals in the Environment 646
SUMMARY 648
REFERENCES 649
REVIEW QUESTIONS 651

CHAPTER 16
Microbial Insecticides 652
Insecticidal Toxin of B. thuringiensis 653
Mode of Action and Use 653
Toxin Gene Isolation 658
Engineering of B. thuringiensis Toxin Genes 660
Synthesis during Vegetative Growth 660
Broadening the Spectrum of Target Insects 663
Improving Delivery of a Mosquitocidal Toxin 666
Protecting Plant Roots 668
Protoxin Processing 670
Preventing the Development of Resistance 671
Improved Biocontrol 674
Baculoviruses as Biocontrol Agents 677
Mode of Action 677
Genetic Engineering for Improved Biocontrol 679
SUMMARY 681
REFERENCES 682
REVIEW QUESTIONS 684
CHAPTER 22
Regulating the Use of Biotechnology 897
Regulating Recombinant DNA Technology 898
Deliberate Release of Genetically Modified Microorganisms 900
Regulating Food and Food Ingredients 903
Food Ingredients Produced by Genetically Engineered Microorganisms 903
Genetically Modified Crops 907
Genetically Engineered Livestock 910
Patenting Biotechnology 911
Patenting in Different Countries 915
Patenting DNA Sequences 916
Patenting Multicellular Organisms 917
Transgenic Mice: Applications 863
Transgenic Disease Models: Alzheimer Disease 863
Using Transgenic Mice as Test Systems 865
Conditional Regulation of Transgene Expression 866
Conditional Control of Cell Death 870
Cloning Livestock by Nuclear Transfer 871
Transgenic Livestock 873
Production of Pharmaceuticals 873
Controversy about the Labeling of Genetically Modified Foods 911
Concerns about the Impact of Genetically Modified Organisms on the Environment 932
Impact on Biodiversity 932
Impact of the Bt Toxin on Nontarget Insects 933
Environmental Benefits of Genetically Modified Organisms 934
Economic Issues 935
Who Benefits from Molecular Biotechnology? 935
How Do Views about Genetically Engineered Food Affect Trade? 936
SUMMARY 937
REFERENCES 938
REVIEW QUESTIONS 939
Preface

Since the early 1970s, when recombinant DNA technology was first developed, there has been a veritable explosion of knowledge in the biological sciences. Since that time, with the advent of PCR, chemical DNA synthesis, DNA sequencing, monoclonal antibodies, directed mutagenesis, genomics, proteomics, and metabolomics, our understanding of and ability to manipulate the biological world have grown exponentially. When the first edition of Molecular Biotechnology: Principles and Applications of Recombinant DNA was published in 1994, nearly all of the transgenic organisms that were produced included only a single introduced gene. Just 15 years later, it is not uncommon for researchers to engineer organisms by modifying both the activity and the regulation of existing genes while at the same time introducing entire new pathways. In 1994, only a handful of products produced by this new technology were available in the marketplace. Today, molecular biotechnology has given us several hundred new therapeutic agents, with many more in the pipeline, as well as dozens of transgenic plants. The use of DNA has become a cornerstone of modern forensics, paternity testing, and ancestry determination. Several new recombinant vaccines have been developed, with many more on the horizon. The list goes on and on. Molecular biotechnology really has lived up to its promise, to all of the original hype. It has been estimated that worldwide there are currently several thousand biotechnology companies employing tens of thousands of scientists. When the exciting science being done at universities, government labs, and research institutes around the world is factored in, the rate of change and of discovery in the biological sciences is astounding. This fourth edition of Molecular Biotechnology, building upon the fundamentals that were established in the previous three editions, endeavors to provide readers with a window on some of the major developments in this growing field in the past several years. Of necessity, we have had to be highly selective in the material that is included in this edition. Moreover, the window that we are looking through is moving. This notwithstanding, we both expect and look forward to the commercialization of many of these discoveries as well as to the development of new approaches, insights, and discoveries.

Bernard R. Glick
Jack J. Pasternak
Cheryl L. Patten
This page intentionally left blank
Molecular Biotechnology emerged as a new research field that arose as a result of the fusion in the late 1970s of recombinant DNA technology and traditional industrial microbiology. Whether one goes to the movies to see Jurassic Park with its ingenious but scientifically untenable plot of cloning dinosaurs, reads in the newspaper about the commercialization of a new “biotech” tomato that has an extended shelf life, or hears one of the critics of molecular biotechnology talking about the possibility of dire consequences from genetic engineering, there is a significant public awareness about recombinant DNA technology. In this book, we introduce and explain what molecular biotechnology actually is as a scientific discipline, how the research in the area is conducted, and how this technology may realistically impact on our lives in the future.

We have written Molecular Biotechnology: Principles and Applications of Recombinant DNA to serve as a text for courses in biotechnology, recombinant DNA technology, and genetic engineering or for any course introducing both the principles and the applications of contemporary molecular biology methods. The book is based on the biotechnology course we have offered for the past 12 years to advanced undergraduate and graduate students from the biological and engineering sciences at the University of Waterloo. We have written this text for students who have an understanding of basic ideas from biochemistry, molecular genetics, and microbiology. We are aware that it is unlikely that students will have had all of these courses before taking a course on biotechnology. Thus, we have tried to develop the topics in this text by explaining their broader biological context before delving into molecular details.

This text emphasizes how recombinant DNA technology can be used to create various useful products. We have, wherever possible, used experimental results and actual methodological strategies to illustrate basic concepts, and we have tried to capture the flavor and feel of how molecular biotechnology operates as a scientific venture. The examples that we have selected—from a vast and rapidly growing literature—were chosen as case studies that not only illustrate particular points but also provide the reader with a solid basis for understanding current research in specialized areas of molecular biotechnology. Nevertheless, we expect that some of our examples will be out of date by the time the book is published, because molecular biotechnology is such a rapidly changing discipline.
For the ease of the day-to-day practitioners, scientific disciplines often develop specialized terms and nomenclature. We have tried to minimize the use of technical jargon and, in many instances, have deliberately used a simple phrase to describe a phenomenon or process that might otherwise have been expressed more succinctly with technical jargon. In any field of study, synonymous terms that describe the same phenomenon exist. In molecular biotechnology, for example, recombinant DNA technology, gene cloning, and genetic engineering, in a broad sense, have the same meaning. When an important term or concept appears for the first time in this text, it is followed in parentheses with a synonym or equivalent expression. An extensive glossary can be found at the end of the book to help the reader with the terminology of molecular biotechnology.

Each chapter opens with an outline of topics and concludes with a detailed summary and list of review questions to sharpen students’ critical thinking skills. All of the key ideas in the book are carefully illustrated by the more than 200 full-color diagrams in the pedagogical belief that a picture is indeed worth a thousand words. After introducing molecular biotechnology as a scientific and economic venture in Chapter 1, the next five chapters (2 to 6) deal with the methodologies of molecular biotechnology. The chapters of Part I act as a stepping-stone for the remainder of the book. Chapters 7 to 12 in Part II present examples of microbial molecular biotechnology covering such topics as the production of metabolites, vaccines, therapeutics, diagnostics, bioremediation, biomass utilization, bacterial fertilizers, and microbial pesticides. Chapter 13 describes some of the key components of large-scale fermentation processes using genetically engineered (recombinant) microorganisms. In Part III, we deal with the molecular biotechnology of plants and animals (Chapters 14 and 15). The isolation of human disease-causing genes by using recombinant DNA technology and how, although it is in its early stages, genetic manipulation is being currently contemplated for the treatment of human diseases are presented in Chapters 16 and 17. The book concludes with coverage of the regulation of molecular biotechnology and patents in Part IV.

A brief mention should be made about the reference sections that follow each chapter. Within many of the chapters we have relied upon the published work of various researchers. In all cases, although not cited directly in the body of a chapter, the original published articles are noted in the reference section of the appropriate chapter. In some cases, we have taken “pedagogic license” and either extracted or reformulated data from the original publications. Clearly, we are responsible for any distortions or misrepresentations from these simplifications, although we hope that none has occurred. The reference sections also contain other sources that we used in a general way, which might, if consulted, bring the readers closer to a particular subject.

Acknowledgments

We express our appreciation to the following people who reviewed various parts of the manuscript as it was being developed. The comments of these expert scientists and teachers helped us immeasurably: Arthur I. Aronson, Purdue University; Ronald M. Atlas, University of Louisville; Fred Ausubel, Massachusetts General Hospital; David R. Benson, University of Connecticut; Jean E. Brenchley, Pennsylvania State University; A. M. Chakrabarty, University of Illinois at Chicago; Stan Gelvin, Purdue
University; Janet H. Glaser, University of Illinois at Urbana-Champaign; David Gwynne, Cambridge NeuroScience; George D. Hegeman, Indiana University; James B. Kaper, University of Maryland at Baltimore; Donald R. Lightfoot, Eastern Washington University at Cheney and Spokane; Cynthia Moore, Washington University; William E. Newton, Virginia Polytechnic University; Danton H. O’Day, University of Toronto in Mississauga; Richard D. Palmiter, University of Washington; David H. Persing, Mayo Clinic; William S. Reznikoff, University of Wisconsin; Campbell W. Robinson, University of Waterloo; Marc Siegel, University of Waterloo; Aaron J. Shatkin, Center for Advanced Biotechnology and Medicine at Rutgers University; Jim Schwartz, Genentech; Daniel C. Stein, University of Maryland at College Park; Dean A. Stetler, University of Kansas; and Robert T. Vinopal, University of Connecticut.

The following professionals at ASM Press worked on the book and deserve our thanks: Susan Birch, senior production editor; Ruth Siegal, developmental editor; Jodi Simpson, copy editor; Susan Schmidler, designer and art director; Peg Markow at Ruttle, Shaw & Wetherill, Inc., senior project manager; and Network Graphics, illustrators. Finally we are indebted to Patrick Fitzgerald, Director of ASM Press, who, in all possible ways, helped transform our original efforts into an acceptable final form. His encouragement as a persistent and friendly “torturer” was deeply appreciated.

BERNARD R. GLICK
JACK J. PASTERNAK
This page intentionally left blank