STRUCTURAL STEEL DESIGN
FIFTH EDITION

JACK C. McCORMAC
STEPHEN F. CSERNAK
INTERNATIONAL EDITION
CONTRIBUTIONS BY
MANOJKUMAR V. CHITAWADAGI

PEARSON
Preface

This textbook has been prepared with the hope that its readers will, as have so many engineers in the past, become interested in structural steel design and want to maintain and increase their knowledge on the subject throughout their careers in the engineering and construction industries. The material was prepared primarily for an introductory course in the junior or senior year but the last several chapters may be used for a graduate class. The authors have assumed that the student has previously taken introductory courses in mechanics of materials and structural analysis.

The authors’ major objective in preparing this new edition was to update the text to conform to both the American Institute of Steel Construction (AISC) 2010 Specification for Structural Steel Buildings and the 14th edition of the AISC Steel Construction Manual published in 2011.

WHAT’S NEW IN THIS EDITION

Several changes to the text were made to the textbook in this edition:

1. End of chapter Problems for Solution have been added for Chapter 1 of the textbook.
2. The load factors and load combinations defined in Chapter 2 of the textbook and used throughout the book in example problems and end of chapter problems for solution have been revised to meet those given in the ASCE 7-10 and Part 2 of the AISC Steel Construction Manual.
3. The classification of compression sections for local buckling defined in Chapter 5 of the textbook has been revised to the new definition given in Section B4.1 of the new AISC Specification. For compression, sections are now classified as non-slender element or slender element sections.
4. The AISC Specification provides several methods to deal with stability analysis and the design of beam-columns. In Chapter 7 of the textbook, the Effective Length Method (ELM) is still used, though a brief introduction to the Direct Analysis Method (DM) has been added. A more comprehensive discussion of the DM is reserved for Chapter 11 of the text.
5. In Chapter 11 of the textbook, both the Direct Analysis Method and the Effective Length Method are presented for the analysis and design of beam-columns. This is to address the fact that the presentation of the Direct Analysis Method was moved from an appendix to Chapter C of the new AISC Specification while the Effective Length Method moved from Chapter C to Appendix 7.
6. Most of the end of chapter Problems for Solution for Chapters 2 through 11 have been revised. For Chapters 12 through 18 about half the problems have been revised.
7. Various photos were updated throughout the textbook.
Instructor resources for the International Edition are available at www.pearsoninternationaleditions.com/mccormac.

The authors would like to express appreciation to Dr. Bryant G. Nielson of Clemson University for his assistance in developing the changes to this manuscript and to Sara Elise Roberts, former Clemson University graduate student, for her assistance in the review of the end of chapter problems and their solutions. In addition, the American Institute of Steel Construction was very helpful in providing advance copies of the AISC Specification and Steel Construction Manual revisions. Finally, we would like to thank our families for their encouragement and support in the revising of the manuscript of this textbook.

We also thank the reviewers and users of the previous editions of this book for their suggestions, corrections, and criticisms. We welcome any comments on this edition.

The publisher would like to thank Muralidhar Mallidu for reviewing content for the International Edition.

Jack C. McCormac, P.E.
Stephen F. Csernak, P.E.
Contents

Preface 3

CHAPTER 1 Introduction to Structural Steel Design 13
1.1 Advantages of Steel as a Structural Material 13
1.2 Disadvantages of Steel as a Structural Material 15
1.3 Early Uses of Iron and Steel 16
1.4 Steel Sections 19
1.5 Metric Units 24
1.6 Cold-Formed Light-Gage Steel Shapes 24
1.7 Stress–Strain Relationships in Structural Steel 25
1.8 Modern Structural Steels 31
1.9 Uses of High-Strength Steels 34
1.10 Measurement of Toughness 36
1.11 Jumbo Sections 38
1.12 Lamellar Tearing 38
1.13 Furnishing of Structural Steel 39
1.14 The Work of the Structural Designer 42
1.15 Responsibilities of the Structural Designer 43
1.16 Economical Design of Steel Members 43
1.17 Failure of Structures 46
1.18 Handling and Shipping Structural Steel 49
1.19 Calculation Accuracy 49
1.20 Computers and Structural Steel Design 49
1.21 Problems for Solution 50

CHAPTER 2 Specifications, Loads, and Methods of Design 51
2.1 Specifications and Building Codes 51
2.2 Loads 53
2.3 Dead Loads 53
2.4 Live Loads 54
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Environmental Loads</td>
<td>57</td>
</tr>
<tr>
<td>2.6</td>
<td>Load and Resistance Factor Design (LRFD) and Allowable Strength Design (ASD)</td>
<td>63</td>
</tr>
<tr>
<td>2.7</td>
<td>Nominal Strengths</td>
<td>64</td>
</tr>
<tr>
<td>2.8</td>
<td>Shading</td>
<td>64</td>
</tr>
<tr>
<td>2.9</td>
<td>Computation of Loads for LRFD and ASD</td>
<td>64</td>
</tr>
<tr>
<td>2.10</td>
<td>Computing Combined Loads with LRFD Expressions</td>
<td>65</td>
</tr>
<tr>
<td>2.11</td>
<td>Computing Combined Loads with ASD Expressions</td>
<td>69</td>
</tr>
<tr>
<td>2.12</td>
<td>Two Methods of Obtaining an Acceptable Level of Safety</td>
<td>70</td>
</tr>
<tr>
<td>2.13</td>
<td>Discussion of Sizes of Load Factors and Safety Factors</td>
<td>71</td>
</tr>
<tr>
<td>2.14</td>
<td>Author’s Comment</td>
<td>72</td>
</tr>
<tr>
<td>2.15</td>
<td>Problems for Solution</td>
<td>72</td>
</tr>
</tbody>
</table>

CHAPTER 3 Analysis of Tension Members
74

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>74</td>
</tr>
<tr>
<td>3.2</td>
<td>Nominal Strengths of Tension Members</td>
<td>77</td>
</tr>
<tr>
<td>3.3</td>
<td>Net Areas</td>
<td>79</td>
</tr>
<tr>
<td>3.4</td>
<td>Effect of Staggered Holes</td>
<td>81</td>
</tr>
<tr>
<td>3.5</td>
<td>Effective Net Areas</td>
<td>86</td>
</tr>
<tr>
<td>3.6</td>
<td>Connecting Elements for Tension Members</td>
<td>96</td>
</tr>
<tr>
<td>3.7</td>
<td>Block Shear</td>
<td>97</td>
</tr>
<tr>
<td>3.8</td>
<td>Problems for Solution</td>
<td>106</td>
</tr>
</tbody>
</table>

CHAPTER 4 Design of Tension Members
115

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Selection of Sections</td>
<td>115</td>
</tr>
<tr>
<td>4.2</td>
<td>Built-Up Tension Members</td>
<td>123</td>
</tr>
<tr>
<td>4.3</td>
<td>Rods and Bars</td>
<td>127</td>
</tr>
<tr>
<td>4.4</td>
<td>Pin-Connected Members</td>
<td>132</td>
</tr>
<tr>
<td>4.5</td>
<td>Design for Fatigue Loads</td>
<td>134</td>
</tr>
<tr>
<td>4.6</td>
<td>Problems for Solution</td>
<td>137</td>
</tr>
</tbody>
</table>

CHAPTER 5 Introduction to Axially Loaded Compression Members
141

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>General</td>
<td>141</td>
</tr>
<tr>
<td>5.2</td>
<td>Residual Stresses</td>
<td>144</td>
</tr>
<tr>
<td>5.3</td>
<td>Sections Used for Columns</td>
<td>145</td>
</tr>
<tr>
<td>5.4</td>
<td>Development of Column Formulas</td>
<td>149</td>
</tr>
<tr>
<td>5.5</td>
<td>The Euler Formula</td>
<td>151</td>
</tr>
<tr>
<td>5.6</td>
<td>End Restraint and Effective Lengths of Columns</td>
<td>153</td>
</tr>
<tr>
<td>5.7</td>
<td>Stiffened and Unstiffened Elements</td>
<td>156</td>
</tr>
<tr>
<td>5.8</td>
<td>Long, Short, and Intermediate Columns</td>
<td>157</td>
</tr>
<tr>
<td>5.9</td>
<td>Column Formulas</td>
<td>160</td>
</tr>
<tr>
<td>5.10</td>
<td>Maximum Slenderness Ratios</td>
<td>162</td>
</tr>
</tbody>
</table>
8.10 Location of Plastic Hinge for Uniform Loadings 261
8.11 Continuous Beams 262
8.12 Building Frames 264
8.13 Problems for Solution 266

CHAPTER 9 Design of Beams for Moments 275
9.1 Introduction 275
9.2 Yielding Behavior—Full Plastic Moment, Zone 1 278
9.3 Design of Beams, Zone 1 279
9.4 Lateral Support of Beams 287
9.5 Introduction to Inelastic Buckling, Zone 2 289
9.6 Moment Capacities, Zone 2 293
9.7 Elastic Buckling, Zone 3 295
9.8 Design Charts 297
9.9 Noncompact Sections 302
9.10 Problems for Solution 307

CHAPTER 10 Design of Beams—Miscellaneous Topics (Shear, Deflection, etc.) 314
10.1 Design of Continuous Beams 314
10.2 Shear 316
10.3 Deflections 322
10.4 Webs and Flanges with Concentrated Loads 328
10.5 Unsymmetrical Bending 336
10.6 Design of Purlins 339
10.7 The Shear Center 342
10.8 Beam-Bearing Plates 347
10.9 Lateral Bracing at Member Ends Supported on Base Plates 351
10.10 Problems for Solution 352

CHAPTER 11 Bending and Axial Force 358
11.1 Occurrence 358
11.2 Members Subject to Bending and Axial Tension 359
11.3 First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending 362
11.4 Direct Analysis Method (DAM) 364
11.5 Effective Length Method (ELM) 365
11.6 Approximate Second-Order Analysis 366
11.7 Beam–Columns in Braced Frames 371
11.8 Beam–Columns in Unbraced Frames 383
11.9 Design of Beam–Columns—Braced or Unbraced 390
11.10 Problems for Solution 398
CHAPTER 12 Bolted Connections

12.1 Introduction 402
12.2 Types of Bolts 402
12.3 History of High-Strength Bolts 403
12.4 Advantages of High-Strength Bolts 404
12.5 Snug-Tight, Pretensioned, and Slip-Critical Bolts 404
12.6 Methods for Fully Pretensioning High-Strength Bolts 408
12.7 Slip-Resistant Connections and Bearing-Type Connections 410
12.8 Mixed Joints 411
12.9 Sizes of Bolt Holes 412
12.10 Load Transfer and Types of Joints 413
12.11 Failure of Bolted Joints 416
12.12 Spacing and Edge Distances of Bolts 417
12.13 Bearing-Type Connections—Loads Passing Through Center of Gravity of Connections 420
12.14 Slip-Critical Connections—Loads Passing Through Center of Gravity of Connections 431
12.15 Problems for Solution 435

CHAPTER 13 Eccentrically Loaded Bolted Connections and Historical Notes on Rivets 442

13.1 Bolts Subjected to Eccentric Shear 442
13.2 Bolts Subjected to Shear and Tension (Bearing-Type Connections) 456
13.3 Bolts Subjected to Shear and Tension (Slip-Critical Connections) 459
13.4 Tension Loads on Bolted Joints 460
13.5 Prying Action 463
13.6 Historical Notes on Rivets 466
13.7 Types of Rivets 467
13.8 Strength of Riveted Connections—Rivets in Shear and Bearing 469
13.9 Problems for Solution 473

CHAPTER 14 Welded Connections 481

14.1 General 481
14.2 Advantages of Welding 482
14.3 American Welding Society 483
14.4 Types of Welding 483
14.5 Prequalified Welding 487
14.6 Welding Inspection 487
14.7 Classification of Welds 490
14.8 Welding Symbols 492
14.9 Groove Welds 494
14.10 Fillet Welds 496
14.11 Strength of Welds 497
14.12 AISC Requirements 498
14.13 Design of Simple Fillet Welds 503
14.14 Design of Connections for Members with Both Longitudinal and Transverse Fillet Welds 509
14.15 Some Miscellaneous Comments 510
14.16 Design of Fillet Welds for Truss Members 511
14.17 Plug and Slot Welds 515
14.18 Shear and Torsion 518
14.19 Shear and Bending 525
14.20 Full-Penetration and Partial-Penetration Groove Welds 527
14.21 Problems for Solution 531

CHAPTER 15 Building Connections 540
15.1 Selection of Type of Fastener 540
15.2 Types of Beam Connections 541
15.3 Standard Bolted Beam Connections 548
15.4 AISC Manual Standard Connection Tables 551
15.5 Designs of Standard Bolted Framed Connections 551
15.6 Designs of Standard Welded Framed Connections 554
15.7 Single-Plate, or Shear Tab, Framing Connections 556
15.8 End-Plate Shear Connections 559
15.9 Designs of Welded Seated Beam Connections 560
15.10 Designs of Stiffened Seated Beam Connections 562
15.11 Designs of Moment-Resisting FR Moment Connections 563
15.12 Column Web Stiffeners 567
15.13 Problems for Solution 570

CHAPTER 16 Composite Beams 574
16.1 Composite Construction 574
16.2 Advantages of Composite Construction 575
16.3 Discussion of Shoring 577
16.4 Effective Flange Widths 578
16.5 Shear Transfer 579
16.6 Partially Composite Beams 582
16.7 Strength of Shear Connectors 582
16.8 Number, Spacing, and Cover Requirements for Shear Connectors 583
16.9 Moment Capacity of Composite Sections 585
16.10 Deflections 590
16.11 Design of Composite Sections 591
16.12 Continuous Composite Sections 600
16.13 Design of Concrete-Encased Sections 601
16.14 Problems for Solution 604

CHAPTER 17 Composite Columns 608
17.1 Introduction 608
17.2 Advantages of Composite Columns 609
17.3 Disadvantages of Composite Columns 611
17.4 Lateral Bracing 611
17.5 Specifications for Composite Columns 612
17.6 Axial Design Strengths of Composite Columns 614
17.7 Shear Strength of Composite Columns 619
17.8 LRFD and ASD Tables 620
17.9 Load Transfer at Footings and Other Connections 621
17.10 Tensile Strength of Composite Columns 622
17.11 Axial Load and Bending 622
17.12 Problems for Solution 622

CHAPTER 18 Cover-Plated Beams and Built-up Girders 625
18.1 Cover-Plated Beams 625
18.2 Built-up Girders 628
18.3 Built-up Girder Proportions 630
18.4 Flexural Strength 636
18.5 Tension Field Action 641
18.6 Design of Stiffeners 646
18.7 Problems for Solution 652

CHAPTER 19 Design of Steel Buildings 654
19.1 Introduction to Low-Rise Buildings 654
19.2 Types of Steel Frames Used for Buildings 654
19.3 Common Types of Floor Construction 658
19.4 Concrete Slabs on Open-Web Steel Joists 659
19.5 One-Way and Two-Way Reinforced-Concrete Slabs 662
19.6 Composite Floors 663
19.7 Concrete-Pan Floors 664
19.8 Steel Floor Deck 665
19.9 Flat Slab Floors 667
19.10 Precast Concrete Floors 668
19.11 Types of Roof Construction 670
19.12 Exterior Walls and Interior Partitions 671
19.13 Fireproofing of Structural Steel 671
19.14 Introduction to High-Rise Buildings 672
19.15 Discussion of Lateral Forces 674
19.16 Types of Lateral Bracing 675
19.17 Analysis of Buildings with Diagonal Wind Bracing for Lateral Forces 681
19.18 Moment-Resisting Joints 683
19.19 Design of Buildings for Gravity Loads 684
19.20 Selection of Members 688

APPENDIX A Derivation of the Euler Formula 689

APPENDIX B Slender Compression Elements 691

APPENDIX C Flexural-Torsional Buckling of Compression Members 694

APPENDIX D Moment-Resisting Column Base Plates 700

APPENDIX E Ponding 709

GLOSSARY 714

INDEX 720